llama-gpt/pages/api/chat.ts

52 lines
1.6 KiB
TypeScript

import { ChatBody, Message, OpenAIModelID } from "@/types";
import { DEFAULT_SYSTEM_PROMPT } from "@/utils/app/const";
import { OpenAIStream } from "@/utils/server";
import tiktokenModel from "@dqbd/tiktoken/encoders/cl100k_base.json";
import { init, Tiktoken } from "@dqbd/tiktoken/lite/init";
// @ts-expect-error
import wasm from "../../node_modules/@dqbd/tiktoken/lite/tiktoken_bg.wasm?module";
export const config = {
runtime: "edge"
};
const handler = async (req: Request): Promise<Response> => {
try {
const { model, messages, key, prompt } = (await req.json()) as ChatBody;
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoding = new Tiktoken(tiktokenModel.bpe_ranks, tiktokenModel.special_tokens, tiktokenModel.pat_str);
const tokenLimit = model.id === OpenAIModelID.GPT_4 ? 6000 : 3000;
let tokenCount = 0;
let messagesToSend: Message[] = [];
for (let i = messages.length - 1; i >= 0; i--) {
const message = messages[i];
const tokens = encoding.encode(message.content);
if (tokenCount + tokens.length > tokenLimit) {
break;
}
tokenCount += tokens.length;
messagesToSend = [message, ...messagesToSend];
}
encoding.free();
let promptToSend = prompt;
if (!promptToSend) {
promptToSend = DEFAULT_SYSTEM_PROMPT;
}
const stream = await OpenAIStream(model, promptToSend, key, messagesToSend);
return new Response(stream);
} catch (error) {
console.error(error);
return new Response("Error", { status: 500 });
}
};
export default handler;