126 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
| """FastAPI app creation, logger configuration and main API routes."""
 | |
| import sys
 | |
| from typing import Any
 | |
| 
 | |
| import llama_index
 | |
| from fastapi import FastAPI
 | |
| from fastapi.openapi.utils import get_openapi
 | |
| from loguru import logger
 | |
| 
 | |
| from private_gpt.paths import docs_path
 | |
| from private_gpt.server.chat.chat_router import chat_router
 | |
| from private_gpt.server.chunks.chunks_router import chunks_router
 | |
| from private_gpt.server.completions.completions_router import completions_router
 | |
| from private_gpt.server.embeddings.embeddings_router import embeddings_router
 | |
| from private_gpt.server.health.health_router import health_router
 | |
| from private_gpt.server.ingest.ingest_router import ingest_router
 | |
| from private_gpt.settings.settings import settings
 | |
| 
 | |
| # Remove pre-configured logging handler
 | |
| logger.remove(0)
 | |
| # Create a new logging handler same as the pre-configured one but with the extra
 | |
| # attribute `request_id`
 | |
| logger.add(
 | |
|     sys.stdout,
 | |
|     level="INFO",
 | |
|     format=(
 | |
|         "<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | "
 | |
|         "<level>{level: <8}</level> | "
 | |
|         "<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | "
 | |
|         "ID: {extra[request_id]} - <level>{message}</level>"
 | |
|     ),
 | |
| )
 | |
| 
 | |
| # Add LlamaIndex simple observability
 | |
| llama_index.set_global_handler("simple")
 | |
| 
 | |
| # Start the API
 | |
| with open(docs_path / "description.md") as description_file:
 | |
|     description = description_file.read()
 | |
| 
 | |
| tags_metadata = [
 | |
|     {
 | |
|         "name": "Ingestion",
 | |
|         "description": "High-level APIs covering document ingestion -internally "
 | |
|         "managing document parsing, splitting,"
 | |
|         "metadata extraction, embedding generation and storage- and ingested "
 | |
|         "documents CRUD."
 | |
|         "Each ingested document is identified by an ID that can be used to filter the "
 | |
|         "context"
 | |
|         "used in *Contextual Completions* and *Context Chunks* APIs.",
 | |
|     },
 | |
|     {
 | |
|         "name": "Contextual Completions",
 | |
|         "description": "High-level APIs covering contextual Chat and Completions. They "
 | |
|         "follow OpenAI's format, extending it to "
 | |
|         "allow using the context coming from ingested documents to create the "
 | |
|         "response. Internally"
 | |
|         "manage context retrieval, prompt engineering and the response generation.",
 | |
|     },
 | |
|     {
 | |
|         "name": "Context Chunks",
 | |
|         "description": "Low-level API that given a query return relevant chunks of "
 | |
|         "text coming from the ingested"
 | |
|         "documents.",
 | |
|     },
 | |
|     {
 | |
|         "name": "Embeddings",
 | |
|         "description": "Low-level API to obtain the vector representation of a given "
 | |
|         "text, using an Embeddings model."
 | |
|         "Follows OpenAI's embeddings API format.",
 | |
|     },
 | |
|     {
 | |
|         "name": "Health",
 | |
|         "description": "Simple health API to make sure the server is up and running.",
 | |
|     },
 | |
| ]
 | |
| 
 | |
| app = FastAPI()
 | |
| 
 | |
| 
 | |
| def custom_openapi() -> dict[str, Any]:
 | |
|     if app.openapi_schema:
 | |
|         return app.openapi_schema
 | |
|     openapi_schema = get_openapi(
 | |
|         title="PrivateGPT",
 | |
|         description=description,
 | |
|         version="0.1.0",
 | |
|         summary="PrivateGPT is a production-ready AI project that allows you to "
 | |
|         "ask questions to your documents using the power of Large Language "
 | |
|         "Models (LLMs), even in scenarios without Internet connection. "
 | |
|         "100% private, no data leaves your execution environment at any point.",
 | |
|         contact={
 | |
|             "url": "https://github.com/imartinez/privateGPT",
 | |
|         },
 | |
|         license_info={
 | |
|             "name": "Apache 2.0",
 | |
|             "url": "https://www.apache.org/licenses/LICENSE-2.0.html",
 | |
|         },
 | |
|         routes=app.routes,
 | |
|         tags=tags_metadata,
 | |
|     )
 | |
|     openapi_schema["info"]["x-logo"] = {
 | |
|         "url": "https://lh3.googleusercontent.com/drive-viewer"
 | |
|         "/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
 | |
|         "E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
 | |
|     }
 | |
| 
 | |
|     app.openapi_schema = openapi_schema
 | |
|     return app.openapi_schema
 | |
| 
 | |
| 
 | |
| app.openapi = custom_openapi  # type: ignore[method-assign]
 | |
| 
 | |
| app.include_router(completions_router)
 | |
| app.include_router(chat_router)
 | |
| app.include_router(chunks_router)
 | |
| app.include_router(ingest_router)
 | |
| app.include_router(embeddings_router)
 | |
| app.include_router(health_router)
 | |
| 
 | |
| 
 | |
| if settings.ui.enabled:
 | |
|     from private_gpt.ui.ui import mount_in_app
 | |
| 
 | |
|     mount_in_app(app)
 |