Support one-liner UI

This commit is contained in:
Aymeric 2024-12-10 11:27:24 +01:00
parent 0ada2ebc27
commit 12822e280d
4 changed files with 110 additions and 55 deletions

View File

@ -81,8 +81,11 @@ class AgentGenerationError(AgentError):
pass
class AgentStep:
pass
@dataclass
class ActionStep:
class ActionStep(AgentStep):
tool_call: str | None = None
start_time: float | None = None
step_end_time: float | None = None
@ -93,18 +96,19 @@ class ActionStep:
llm_output: str | None = None
@dataclass
class PlanningStep:
class PlanningStep(AgentStep):
plan: str
facts: str
@dataclass
class TaskStep:
class TaskStep(AgentStep):
task: str
@dataclass
class SystemPromptStep:
class SystemPromptStep(AgentStep):
system_prompt: str
def format_prompt_with_tools(toolbox: Toolbox, prompt_template: str, tool_description_template: str) -> str:
tool_descriptions = toolbox.show_tool_descriptions(tool_description_template)
prompt = prompt_template.replace("{{tool_descriptions}}", tool_descriptions)

92
agents/gradio_ui.py Normal file
View File

@ -0,0 +1,92 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .agent_types import AgentAudio, AgentImage, AgentText
from .agents import BaseAgent, AgentStep, ActionStep
import gradio as gr
def pull_messages_from_step(step_log: AgentStep, test_mode: bool = True):
"""Extract ChatMessage objects from agent steps"""
if isinstance(step_log, ActionStep):
yield gr.ChatMessage(role="assistant", content=step_log.rationale)
if step_log.tool_call is not None:
used_code = step_log.tool_call["tool_name"] == "code interpreter"
content = step_log.tool_call["tool_arguments"]
if used_code:
content = f"```py\n{content}\n```"
yield gr.ChatMessage(
role="assistant",
metadata={"title": f"🛠️ Used tool {step_log.tool_call['tool_name']}"},
content=str(content),
)
if step_log.observation is not None:
yield gr.ChatMessage(role="assistant", content=f"```\n{step_log.observation}\n```")
if step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error"},
)
def stream_to_gradio(agent, task: str, test_mode: bool = False, reset_agent_memory: bool=False, **kwargs):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, **kwargs):
for message in pull_messages_from_step(step_log, test_mode=test_mode):
yield message
final_answer = step_log # Last log is the run's final_answer
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{final_answer.to_string()}\n```")
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=str(final_answer))
class GradioUI():
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: BaseAgent):
self.agent = agent
def interact_with_agent(self, prompt, messages):
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
def run(self):
with gr.Blocks() as demo:
stored_message = gr.State([])
chatbot = gr.Chatbot(label="Agent",
type="messages",
avatar_images=(None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png"))
text_input = gr.Textbox(lines=1, label="Chat Message")
text_input.submit(lambda s: (s, ""), [text_input], [stored_message, text_input]).then(self.interact_with_agent, [stored_message, chatbot], [chatbot])
demo.launch()

View File

@ -14,59 +14,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .agent_types import AgentAudio, AgentImage, AgentText
from .utils import console
def pull_message(step_log: dict, test_mode: bool = True):
from gradio import ChatMessage
if step_log.get("rationale"):
yield ChatMessage(role="assistant", content=step_log["rationale"])
if step_log.get("tool_call"):
used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
content = step_log["tool_call"]["tool_arguments"]
if used_code:
content = f"```py\n{content}\n```"
yield ChatMessage(
role="assistant",
metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"},
content=str(content),
)
if step_log.get("observation"):
yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
if step_log.get("error"):
yield ChatMessage(
role="assistant",
content=str(step_log["error"]),
metadata={"title": "💥 Error"},
)
def stream_to_gradio(agent, task: str, test_mode: bool = False, reset_agent_memory: bool=False, **kwargs):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
from gradio import ChatMessage
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, **kwargs):
if isinstance(step_log, dict):
for message in pull_message(step_log, test_mode=test_mode):
yield message
final_answer = step_log # Last log is the run's final_answer
if isinstance(final_answer, AgentText):
yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{final_answer.to_string()}\n```")
elif isinstance(final_answer, AgentImage):
yield ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield ChatMessage(role="assistant", content=str(final_answer))
class Monitor:

View File

@ -0,0 +1,10 @@
from agents.gradio_ui import GradioUI
from agents import HfApiEngine, load_tool, CodeAgent
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfApiEngine("Qwen/Qwen2.5-72B-Instruct")
agent = CodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
GradioUI(agent).run()