Support one-liner UI
This commit is contained in:
parent
0ada2ebc27
commit
12822e280d
|
@ -81,8 +81,11 @@ class AgentGenerationError(AgentError):
|
||||||
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
class AgentStep:
|
||||||
|
pass
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ActionStep:
|
class ActionStep(AgentStep):
|
||||||
tool_call: str | None = None
|
tool_call: str | None = None
|
||||||
start_time: float | None = None
|
start_time: float | None = None
|
||||||
step_end_time: float | None = None
|
step_end_time: float | None = None
|
||||||
|
@ -93,18 +96,19 @@ class ActionStep:
|
||||||
llm_output: str | None = None
|
llm_output: str | None = None
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class PlanningStep:
|
class PlanningStep(AgentStep):
|
||||||
plan: str
|
plan: str
|
||||||
facts: str
|
facts: str
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class TaskStep:
|
class TaskStep(AgentStep):
|
||||||
task: str
|
task: str
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class SystemPromptStep:
|
class SystemPromptStep(AgentStep):
|
||||||
system_prompt: str
|
system_prompt: str
|
||||||
|
|
||||||
|
|
||||||
def format_prompt_with_tools(toolbox: Toolbox, prompt_template: str, tool_description_template: str) -> str:
|
def format_prompt_with_tools(toolbox: Toolbox, prompt_template: str, tool_description_template: str) -> str:
|
||||||
tool_descriptions = toolbox.show_tool_descriptions(tool_description_template)
|
tool_descriptions = toolbox.show_tool_descriptions(tool_description_template)
|
||||||
prompt = prompt_template.replace("{{tool_descriptions}}", tool_descriptions)
|
prompt = prompt_template.replace("{{tool_descriptions}}", tool_descriptions)
|
||||||
|
|
|
@ -0,0 +1,92 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
|
||||||
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from .agent_types import AgentAudio, AgentImage, AgentText
|
||||||
|
from .agents import BaseAgent, AgentStep, ActionStep
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
def pull_messages_from_step(step_log: AgentStep, test_mode: bool = True):
|
||||||
|
"""Extract ChatMessage objects from agent steps"""
|
||||||
|
if isinstance(step_log, ActionStep):
|
||||||
|
yield gr.ChatMessage(role="assistant", content=step_log.rationale)
|
||||||
|
if step_log.tool_call is not None:
|
||||||
|
used_code = step_log.tool_call["tool_name"] == "code interpreter"
|
||||||
|
content = step_log.tool_call["tool_arguments"]
|
||||||
|
if used_code:
|
||||||
|
content = f"```py\n{content}\n```"
|
||||||
|
yield gr.ChatMessage(
|
||||||
|
role="assistant",
|
||||||
|
metadata={"title": f"🛠️ Used tool {step_log.tool_call['tool_name']}"},
|
||||||
|
content=str(content),
|
||||||
|
)
|
||||||
|
if step_log.observation is not None:
|
||||||
|
yield gr.ChatMessage(role="assistant", content=f"```\n{step_log.observation}\n```")
|
||||||
|
if step_log.error is not None:
|
||||||
|
yield gr.ChatMessage(
|
||||||
|
role="assistant",
|
||||||
|
content=str(step_log.error),
|
||||||
|
metadata={"title": "💥 Error"},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def stream_to_gradio(agent, task: str, test_mode: bool = False, reset_agent_memory: bool=False, **kwargs):
|
||||||
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
||||||
|
|
||||||
|
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, **kwargs):
|
||||||
|
for message in pull_messages_from_step(step_log, test_mode=test_mode):
|
||||||
|
yield message
|
||||||
|
|
||||||
|
final_answer = step_log # Last log is the run's final_answer
|
||||||
|
|
||||||
|
if isinstance(final_answer, AgentText):
|
||||||
|
yield gr.ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{final_answer.to_string()}\n```")
|
||||||
|
elif isinstance(final_answer, AgentImage):
|
||||||
|
yield gr.ChatMessage(
|
||||||
|
role="assistant",
|
||||||
|
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
||||||
|
)
|
||||||
|
elif isinstance(final_answer, AgentAudio):
|
||||||
|
yield gr.ChatMessage(
|
||||||
|
role="assistant",
|
||||||
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
yield gr.ChatMessage(role="assistant", content=str(final_answer))
|
||||||
|
|
||||||
|
|
||||||
|
class GradioUI():
|
||||||
|
"""A one-line interface to launch your agent in Gradio"""
|
||||||
|
def __init__(self, agent: BaseAgent):
|
||||||
|
self.agent = agent
|
||||||
|
|
||||||
|
def interact_with_agent(self, prompt, messages):
|
||||||
|
messages.append(gr.ChatMessage(role="user", content=prompt))
|
||||||
|
yield messages
|
||||||
|
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
|
||||||
|
messages.append(msg)
|
||||||
|
yield messages
|
||||||
|
yield messages
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
with gr.Blocks() as demo:
|
||||||
|
stored_message = gr.State([])
|
||||||
|
chatbot = gr.Chatbot(label="Agent",
|
||||||
|
type="messages",
|
||||||
|
avatar_images=(None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png"))
|
||||||
|
text_input = gr.Textbox(lines=1, label="Chat Message")
|
||||||
|
text_input.submit(lambda s: (s, ""), [text_input], [stored_message, text_input]).then(self.interact_with_agent, [stored_message, chatbot], [chatbot])
|
||||||
|
|
||||||
|
demo.launch()
|
|
@ -14,59 +14,8 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from .agent_types import AgentAudio, AgentImage, AgentText
|
|
||||||
from .utils import console
|
from .utils import console
|
||||||
|
|
||||||
def pull_message(step_log: dict, test_mode: bool = True):
|
|
||||||
from gradio import ChatMessage
|
|
||||||
|
|
||||||
if step_log.get("rationale"):
|
|
||||||
yield ChatMessage(role="assistant", content=step_log["rationale"])
|
|
||||||
if step_log.get("tool_call"):
|
|
||||||
used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
|
|
||||||
content = step_log["tool_call"]["tool_arguments"]
|
|
||||||
if used_code:
|
|
||||||
content = f"```py\n{content}\n```"
|
|
||||||
yield ChatMessage(
|
|
||||||
role="assistant",
|
|
||||||
metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"},
|
|
||||||
content=str(content),
|
|
||||||
)
|
|
||||||
if step_log.get("observation"):
|
|
||||||
yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
|
|
||||||
if step_log.get("error"):
|
|
||||||
yield ChatMessage(
|
|
||||||
role="assistant",
|
|
||||||
content=str(step_log["error"]),
|
|
||||||
metadata={"title": "💥 Error"},
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def stream_to_gradio(agent, task: str, test_mode: bool = False, reset_agent_memory: bool=False, **kwargs):
|
|
||||||
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
|
||||||
from gradio import ChatMessage
|
|
||||||
|
|
||||||
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, **kwargs):
|
|
||||||
if isinstance(step_log, dict):
|
|
||||||
for message in pull_message(step_log, test_mode=test_mode):
|
|
||||||
yield message
|
|
||||||
|
|
||||||
final_answer = step_log # Last log is the run's final_answer
|
|
||||||
|
|
||||||
if isinstance(final_answer, AgentText):
|
|
||||||
yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{final_answer.to_string()}\n```")
|
|
||||||
elif isinstance(final_answer, AgentImage):
|
|
||||||
yield ChatMessage(
|
|
||||||
role="assistant",
|
|
||||||
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
|
||||||
)
|
|
||||||
elif isinstance(final_answer, AgentAudio):
|
|
||||||
yield ChatMessage(
|
|
||||||
role="assistant",
|
|
||||||
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
yield ChatMessage(role="assistant", content=str(final_answer))
|
|
||||||
|
|
||||||
|
|
||||||
class Monitor:
|
class Monitor:
|
||||||
|
|
|
@ -0,0 +1,10 @@
|
||||||
|
from agents.gradio_ui import GradioUI
|
||||||
|
from agents import HfApiEngine, load_tool, CodeAgent
|
||||||
|
|
||||||
|
image_generation_tool = load_tool("m-ric/text-to-image")
|
||||||
|
|
||||||
|
llm_engine = HfApiEngine("Qwen/Qwen2.5-72B-Instruct")
|
||||||
|
|
||||||
|
agent = CodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
|
||||||
|
|
||||||
|
GradioUI(agent).run()
|
Loading…
Reference in New Issue