Merge pull request #49 from ScientistIzaak/add-device-parameter
Add device parameter for TransformerModel in models.py
This commit is contained in:
commit
19143af576
|
@ -29,6 +29,7 @@ import litellm
|
|||
import logging
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
|
@ -279,9 +280,16 @@ class HfApiModel(Model):
|
|||
|
||||
|
||||
class TransformersModel(Model):
|
||||
"""This engine initializes a model and tokenizer from the given `model_id`."""
|
||||
"""This engine initializes a model and tokenizer from the given `model_id`.
|
||||
|
||||
Parameters:
|
||||
model_id (`str`, *optional*, defaults to `"HuggingFaceTB/SmolLM2-1.7B-Instruct"`):
|
||||
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
|
||||
device (`str`, optional, defaults to `"cuda"` if available, else `"cpu"`.):
|
||||
The device to load the model on (`"cpu"` or `"cuda"`).
|
||||
"""
|
||||
|
||||
def __init__(self, model_id: Optional[str] = None):
|
||||
def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
|
||||
super().__init__()
|
||||
default_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
||||
if model_id is None:
|
||||
|
@ -290,15 +298,19 @@ class TransformersModel(Model):
|
|||
f"`model_id`not provided, using this default tokenizer for token counts: '{model_id}'"
|
||||
)
|
||||
self.model_id = model_id
|
||||
if device is None:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self.device = device
|
||||
logger.info(f"Using device: {self.device}")
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to load tokenizer and model for {model_id=}: {e}. Loading default tokenizer and model instead from {model_id=}."
|
||||
)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(default_model_id)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(default_model_id)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(default_model_id).to(self.device)
|
||||
|
||||
def make_stopping_criteria(self, stop_sequences: List[str]) -> StoppingCriteriaList:
|
||||
class StopOnStrings(StoppingCriteria):
|
||||
|
|
Loading…
Reference in New Issue