Make RAG example extremely fast with BM25
This commit is contained in:
parent
eecd728668
commit
1abaf69b67
|
@ -78,7 +78,7 @@ The `preview` command only works with existing doc files. When you add a complet
|
|||
Accepted files are Markdown (.md).
|
||||
|
||||
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
|
||||
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/agents/blob/main/docs/source/_toctree.yml) file.
|
||||
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/smolagents/blob/main/docs/source/_toctree.yml) file.
|
||||
|
||||
## Renaming section headers and moving sections
|
||||
|
||||
|
@ -108,7 +108,7 @@ For an example of a rich moved section set please see the very end of [the trans
|
|||
|
||||
## Writing Documentation - Specification
|
||||
|
||||
The `huggingface/agents` documentation follows the
|
||||
The `huggingface/smolagents` documentation follows the
|
||||
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings,
|
||||
although we can write them directly in Markdown.
|
||||
|
||||
|
@ -123,7 +123,7 @@ Make sure to put your new file under the proper section. If you have a doubt, fe
|
|||
|
||||
### Translating
|
||||
|
||||
When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/agents/blob/main/docs/TRANSLATING.md).
|
||||
When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/smolagents/blob/main/docs/TRANSLATING.md).
|
||||
|
||||
### Writing source documentation
|
||||
|
||||
|
|
|
@ -52,14 +52,10 @@ Then prepare the knowledge base by processing the dataset and storing it into a
|
|||
We use [LangChain](https://python.langchain.com/docs/introduction/) for its excellent vector database utilities.
|
||||
|
||||
```py
|
||||
import time
|
||||
import datasets
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.vectorstores import FAISS, DistanceStrategy
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
from langchain_community.retrievers import BM25Retriever
|
||||
|
||||
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
|
||||
knowledge_base = knowledge_base.filter(lambda row: row["source"].startswith("huggingface/transformers"))
|
||||
|
@ -69,47 +65,17 @@ source_docs = [
|
|||
for doc in knowledge_base
|
||||
]
|
||||
|
||||
embedding_model = "TaylorAI/gte-tiny"
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
||||
AutoTokenizer.from_pretrained(embedding_model),
|
||||
chunk_size=200,
|
||||
chunk_overlap=20,
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=500,
|
||||
chunk_overlap=50,
|
||||
add_start_index=True,
|
||||
strip_whitespace=True,
|
||||
separators=["\n\n", "\n", ".", " ", ""],
|
||||
)
|
||||
|
||||
# Split docs and keep only unique ones
|
||||
print("Splitting documents...")
|
||||
docs_processed = []
|
||||
unique_texts = {}
|
||||
for doc in tqdm(source_docs):
|
||||
new_docs = text_splitter.split_documents([doc])
|
||||
for new_doc in new_docs:
|
||||
if new_doc.page_content not in unique_texts:
|
||||
unique_texts[new_doc.page_content] = True
|
||||
docs_processed.append(new_doc)
|
||||
|
||||
print(
|
||||
"Embedding documents... This could take a few minutes."
|
||||
)
|
||||
t0 = time.time()
|
||||
embedding_model = HuggingFaceEmbeddings(
|
||||
model_name=embedding_model,
|
||||
show_progress=True
|
||||
)
|
||||
vectordb = FAISS.from_documents(
|
||||
documents=docs_processed,
|
||||
embedding=embedding_model,
|
||||
distance_strategy=DistanceStrategy.COSINE,
|
||||
)
|
||||
t1 = time.time()
|
||||
print(f"VectorDB embedded in {(t1-t0):.2f} seconds")
|
||||
docs_processed = text_splitter.split_documents(source_docs)
|
||||
```
|
||||
If you want to improve performance, head to the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) to select a bigger model for your embeddings: here we selected a small one for the sake of speed.
|
||||
|
||||
Now the database is ready. Building the embeddings for each document snippet took a few minutes, but now they're ready to be used in a split second.
|
||||
Now the documents are ready.
|
||||
|
||||
So let’s build our agentic RAG system!
|
||||
|
||||
|
@ -122,7 +88,7 @@ from smolagents import Tool
|
|||
|
||||
class RetrieverTool(Tool):
|
||||
name = "retriever"
|
||||
description = "Using semantic similarity, retrieves some documents from the knowledge base that have the closest embeddings to the input query."
|
||||
description = "Uses semantic search to retrieve the parts of transformers documentation that could be most relevant to answer your query."
|
||||
inputs = {
|
||||
"query": {
|
||||
"type": "string",
|
||||
|
@ -131,27 +97,31 @@ class RetrieverTool(Tool):
|
|||
}
|
||||
output_type = "string"
|
||||
|
||||
def __init__(self, vectordb, **kwargs):
|
||||
def __init__(self, docs, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.vectordb = vectordb
|
||||
self.retriever = BM25Retriever.from_documents(
|
||||
docs, k=10
|
||||
)
|
||||
|
||||
def forward(self, query: str) -> str:
|
||||
assert isinstance(query, str), "Your search query must be a string"
|
||||
|
||||
docs = self.vectordb.similarity_search(
|
||||
docs = self.retriever.invoke(
|
||||
query,
|
||||
k=10,
|
||||
)
|
||||
|
||||
return "\nRetrieved documents:\n" + "".join(
|
||||
[
|
||||
f"===== Document {str(i)} =====\n" + doc.page_content
|
||||
f"\n\n===== Document {str(i)} =====\n" + doc.page_content
|
||||
for i, doc in enumerate(docs)
|
||||
]
|
||||
)
|
||||
```
|
||||
|
||||
Now it’s straightforward to create an agent that leverages this tool!
|
||||
retriever_tool = RetrieverTool(docs_processed)
|
||||
```
|
||||
We have used BM25, a classic retrieval method, because it's lightning fast to setup.
|
||||
To improve retrieval accuracy, you could use replace BM25 with semantic search using vector representations for documents: thus you can head to the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) to select a good embedding model.
|
||||
|
||||
Now it’s straightforward to create an agent that leverages this `retriever_tool`!
|
||||
|
||||
The agent will need these arguments upon initialization:
|
||||
- `tools`: a list of tools that the agent will be able to call.
|
||||
|
@ -167,7 +137,6 @@ _Note:_ The Inference API hosts models based on various criteria, and deployed m
|
|||
```py
|
||||
from smolagents import HfApiModel, CodeAgent
|
||||
|
||||
retriever_tool = RetrieverTool(vectordb)
|
||||
agent = CodeAgent(
|
||||
tools=[retriever_tool], model=HfApiModel("meta-llama/Llama-3.3-70B-Instruct"), max_iterations=4, verbose=True
|
||||
)
|
||||
|
@ -178,7 +147,7 @@ Upon initializing the CodeAgent, it has been automatically given a default syste
|
|||
Then when its `.run()` method is launched, the agent takes care of calling the LLM engine, and executing the tool calls, all in a loop that ends only when tool `final_answer` is called with the final answer as its argument.
|
||||
|
||||
```py
|
||||
agent_output = agent.run("How can I push a model to the Hub?")
|
||||
agent_output = agent.run("For a transformers model training, which is slower, the forward or the backward pass?")
|
||||
|
||||
print("Final output:")
|
||||
print(agent_output)
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
FROM e2bdev/code-interpreter:latest
|
||||
|
||||
# Install dependencies and customize sandbox
|
||||
RUN pip install git+https://github.com/huggingface/agents.git
|
||||
RUN pip install git+https://github.com/huggingface/smolagents.git
|
|
@ -1,59 +1,28 @@
|
|||
# from huggingface_hub import login
|
||||
|
||||
# login()
|
||||
import time
|
||||
import datasets
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.vectorstores import FAISS, DistanceStrategy
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
from langchain_community.retrievers import BM25Retriever
|
||||
|
||||
|
||||
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
|
||||
knowledge_base = knowledge_base.filter(lambda row: row["source"].startswith("huggingface/transformers"))
|
||||
embedding_model = "TaylorAI/gte-tiny"
|
||||
|
||||
source_docs = [
|
||||
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]})
|
||||
for doc in knowledge_base
|
||||
]
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
||||
AutoTokenizer.from_pretrained(embedding_model),
|
||||
chunk_size=200,
|
||||
chunk_overlap=20,
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=500,
|
||||
chunk_overlap=50,
|
||||
add_start_index=True,
|
||||
strip_whitespace=True,
|
||||
separators=["\n\n", "\n", ".", " ", ""],
|
||||
)
|
||||
|
||||
# Split docs and keep only unique ones
|
||||
print("Splitting documents...")
|
||||
docs_processed = []
|
||||
unique_texts = {}
|
||||
for doc in tqdm(source_docs):
|
||||
new_docs = text_splitter.split_documents([doc])
|
||||
for new_doc in new_docs:
|
||||
if new_doc.page_content not in unique_texts:
|
||||
unique_texts[new_doc.page_content] = True
|
||||
docs_processed.append(new_doc)
|
||||
|
||||
print(
|
||||
"Embedding documents... This could take a few minutes."
|
||||
)
|
||||
t0 = time.time()
|
||||
embedding_model = HuggingFaceEmbeddings(
|
||||
model_name=embedding_model,
|
||||
show_progress=True
|
||||
)
|
||||
vectordb = FAISS.from_documents(
|
||||
documents=docs_processed,
|
||||
embedding=embedding_model,
|
||||
distance_strategy=DistanceStrategy.COSINE,
|
||||
)
|
||||
t1 = time.time()
|
||||
print(f"VectorDB embedded in {(t1-t0):.2f} seconds")
|
||||
docs_processed = text_splitter.split_documents(source_docs)
|
||||
|
||||
from smolagents import Tool
|
||||
|
||||
|
@ -68,33 +37,33 @@ class RetrieverTool(Tool):
|
|||
}
|
||||
output_type = "string"
|
||||
|
||||
def __init__(self, vectordb, **kwargs):
|
||||
def __init__(self, docs, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.vectordb = vectordb
|
||||
self.retriever = BM25Retriever.from_documents(
|
||||
docs, k=10
|
||||
)
|
||||
|
||||
def forward(self, query: str) -> str:
|
||||
assert isinstance(query, str), "Your search query must be a string"
|
||||
|
||||
docs = self.vectordb.similarity_search(
|
||||
docs = self.retriever.invoke(
|
||||
query,
|
||||
k=10,
|
||||
)
|
||||
|
||||
return "\nRetrieved documents:\n" + "".join(
|
||||
[
|
||||
f"===== Document {str(i)} =====\n" + doc.page_content
|
||||
f"\n\n===== Document {str(i)} =====\n" + doc.page_content
|
||||
for i, doc in enumerate(docs)
|
||||
]
|
||||
)
|
||||
|
||||
from smolagents import HfApiModel, CodeAgent
|
||||
|
||||
retriever_tool = RetrieverTool(vectordb)
|
||||
retriever_tool = RetrieverTool(docs_processed)
|
||||
agent = CodeAgent(
|
||||
tools=[retriever_tool], model=HfApiModel("meta-llama/Llama-3.3-70B-Instruct"), max_iterations=4, verbose=True
|
||||
)
|
||||
|
||||
agent_output = agent.run("For a transformers model training, which is faster, the forward or the backward pass?")
|
||||
agent_output = agent.run("For a transformers model training, which is slower, the forward or the backward pass?")
|
||||
|
||||
print("Final output:")
|
||||
print(agent_output)
|
||||
|
|
|
@ -910,7 +910,7 @@ class CodeAgent(MultiStepAgent):
|
|||
align="left",
|
||||
style="orange",
|
||||
),
|
||||
Syntax(llm_output, lexer="markdown", theme="github-dark"),
|
||||
Syntax(llm_output, lexer="markdown", theme="github-dark", word_wrap=True),
|
||||
)
|
||||
)
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ class E2BExecutor:
|
|||
# TODO: validate installing agents package or not
|
||||
# print("Installing agents package on remote executor...")
|
||||
# self.sbx.commands.run(
|
||||
# "pip install git+https://github.com/huggingface/agents.git",
|
||||
# "pip install git+https://github.com/huggingface/smolagents.git",
|
||||
# timeout=300
|
||||
# )
|
||||
# print("Installation of agents package finished.")
|
||||
|
|
Loading…
Reference in New Issue