Add multiagent example
This commit is contained in:
parent
54d6857da2
commit
59993e6a76
|
@ -0,0 +1,176 @@
|
|||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
# Orchestrate a multi-agent system 🤖🤝🤖
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
In this notebook we will make a **multi-agent web browser: an agentic system with several agents collaborating to solve problems using the web!**
|
||||
|
||||
It will be a simple hierarchy, using a `ManagedAgent` object to wrap the managed web search agent:
|
||||
|
||||
```
|
||||
+----------------+
|
||||
| Manager agent |
|
||||
+----------------+
|
||||
|
|
||||
_______________|______________
|
||||
| |
|
||||
Code interpreter +--------------------------------+
|
||||
tool | Managed agent |
|
||||
| +------------------+ |
|
||||
| | Web Search agent | |
|
||||
| +------------------+ |
|
||||
| | | |
|
||||
| Web Search tool | |
|
||||
| Visit webpage tool |
|
||||
+--------------------------------+
|
||||
```
|
||||
Let's set up this system.
|
||||
|
||||
Run the line below to install the required dependencies:
|
||||
|
||||
```
|
||||
!pip install markdownify duckduckgo-search smolagents --upgrade -q
|
||||
```
|
||||
|
||||
Let's login in order to call the HF Inference API:
|
||||
|
||||
```py
|
||||
from huggingface_hub import notebook_login
|
||||
|
||||
notebook_login()
|
||||
```
|
||||
|
||||
⚡️ Our agent will be powered by [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) using `HfApiModel` class that uses HF's Inference API: the Inference API allows to quickly and easily run any OS model.
|
||||
|
||||
_Note:_ The Inference API hosts models based on various criteria, and deployed models may be updated or replaced without prior notice. Learn more about it [here](https://huggingface.co/docs/api-inference/supported-models).
|
||||
|
||||
```py
|
||||
model = "Qwen/Qwen2.5-Coder-32B-Instruct"
|
||||
```
|
||||
|
||||
### 🔍 Create a web search tool
|
||||
|
||||
For web browsing, we can already use our pre-existing [`DuckDuckGoSearchTool`](https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools/search.py) tool to provide a Google search equivalent.
|
||||
|
||||
But then we will also need to be able to peak into the page found by the `DuckDuckGoSearchTool`.
|
||||
To do so, we could import the library's built-in `VisitWebpageTool`, but we will build it again to see how it's done.
|
||||
|
||||
So let's create our `VisitWebpageTool` tool from scratch using `markdownify`.
|
||||
|
||||
```py
|
||||
import re
|
||||
import requests
|
||||
from markdownify import markdownify
|
||||
from requests.exceptions import RequestException
|
||||
from smolagents import tool
|
||||
|
||||
|
||||
@tool
|
||||
def visit_webpage(url: str) -> str:
|
||||
"""Visits a webpage at the given URL and returns its content as a markdown string.
|
||||
|
||||
Args:
|
||||
url: The URL of the webpage to visit.
|
||||
|
||||
Returns:
|
||||
The content of the webpage converted to Markdown, or an error message if the request fails.
|
||||
"""
|
||||
try:
|
||||
# Send a GET request to the URL
|
||||
response = requests.get(url)
|
||||
response.raise_for_status() # Raise an exception for bad status codes
|
||||
|
||||
# Convert the HTML content to Markdown
|
||||
markdown_content = markdownify(response.text).strip()
|
||||
|
||||
# Remove multiple line breaks
|
||||
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
||||
|
||||
return markdown_content
|
||||
|
||||
except RequestException as e:
|
||||
return f"Error fetching the webpage: {str(e)}"
|
||||
except Exception as e:
|
||||
return f"An unexpected error occurred: {str(e)}"
|
||||
```
|
||||
|
||||
Ok, now let's initialize and test our tool!
|
||||
|
||||
```py
|
||||
print(visit_webpage("https://en.wikipedia.org/wiki/Hugging_Face")[:500])
|
||||
```
|
||||
|
||||
## Build our multi-agent system 🤖🤝🤖
|
||||
|
||||
Now that we have all the tools `search` and `visit_webpage`, we can use them to create the web agent.
|
||||
|
||||
Which configuration to choose for this agent?
|
||||
- Web browsing is a single-timeline task that does not require parallel tool calls, so JSON tool calling works well for that. We thus choose a `JsonAgent`.
|
||||
- Also, since sometimes web search requires exploring many pages before finding the correct answer, we prefer to increase the number of `max_iterations` to 10.
|
||||
|
||||
```py
|
||||
from smolagents import (
|
||||
CodeAgent,
|
||||
ToolCallingAgent,
|
||||
HfApiModel,
|
||||
ManagedAgent,
|
||||
)
|
||||
from smolagents.default_tools import DuckDuckGoSearchTool
|
||||
|
||||
model = HfApiModel(model)
|
||||
|
||||
web_agent = ToolCallingAgent(
|
||||
tools=[DuckDuckGoSearchTool(), visit_webpage],
|
||||
model=model,
|
||||
max_iterations=10,
|
||||
)
|
||||
```
|
||||
|
||||
We then wrap this agent into a `ManagedAgent` that will make it callable by its manager agent.
|
||||
|
||||
```py
|
||||
managed_web_agent = ManagedAgent(
|
||||
agent=web_agent,
|
||||
name="search",
|
||||
description="Runs web searches for you. Give it your query as an argument.",
|
||||
)
|
||||
```
|
||||
|
||||
Finally we create a manager agent, and upon initialization we pass our managed agent to it in its `managed_agents` argument.
|
||||
|
||||
Since this agent is the one tasked with the planning and thinking, advanced reasoning will be beneficial, so a `CodeAgent` will be the best choice.
|
||||
|
||||
Also, we want to ask a question that involves the current year: so let us add `additional_authorized_imports=["time"]`
|
||||
|
||||
```py
|
||||
manager_agent = CodeAgent(
|
||||
tools=[],
|
||||
model=model,
|
||||
managed_agents=[managed_web_agent],
|
||||
additional_authorized_imports=["time"],
|
||||
)
|
||||
```
|
||||
|
||||
That's all! Now let's run our system! We select a question that requires some calculation and
|
||||
|
||||
```py
|
||||
manager_agent.run("How many years ago was Stripe founded?")
|
||||
```
|
||||
|
||||
Our agents managed to efficiently collaborate towards solving the task! ✅
|
||||
|
||||
💡 You can easily extend this to more agents: one does the code execution, one the web search, one handles file loadings...
|
|
@ -40,7 +40,7 @@ Run the line below to install required dependencies:
|
|||
To call the HF Inference API, you will need a valid token as your environment variable `HF_TOKEN`.
|
||||
We use python-dotenv to load it.
|
||||
```py
|
||||
from python_dotenv import load_dotenv
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
```
|
||||
|
||||
|
|
|
@ -71,8 +71,6 @@ class DocCodeExtractor:
|
|||
assert len(combined_code) > 0, "Code is empty!"
|
||||
tmp_file = Path(tmp_dir) / "test_script.py"
|
||||
|
||||
print("COFF", combined_code)
|
||||
|
||||
with open(tmp_file, "w", encoding="utf-8") as f:
|
||||
f.write(combined_code)
|
||||
|
||||
|
@ -110,7 +108,20 @@ class TestDocs:
|
|||
content = f.read()
|
||||
|
||||
code_blocks = self.extractor.extract_python_code(content)
|
||||
if not code_blocks:
|
||||
excluded_snippets = [
|
||||
"ToolCollection",
|
||||
"image_generation_tool",
|
||||
"from_langchain",
|
||||
"while llm_should_continue(memory):",
|
||||
]
|
||||
code_blocks = [
|
||||
block
|
||||
for block in code_blocks
|
||||
if not any(
|
||||
[snippet in block for snippet in excluded_snippets]
|
||||
) # Exclude these tools that take longer to run and add dependencies
|
||||
]
|
||||
if len(code_blocks) == 0:
|
||||
pytest.skip(f"No Python code blocks found in {doc_path.name}")
|
||||
|
||||
# Validate syntax of each block individually by parsing it
|
||||
|
@ -119,20 +130,11 @@ class TestDocs:
|
|||
|
||||
# Create and execute test script
|
||||
try:
|
||||
excluded_snippets = [
|
||||
"ToolCollection",
|
||||
"image_generation_tool",
|
||||
"from_langchain",
|
||||
"while llm_should_continue(memory):",
|
||||
]
|
||||
code_blocks = [
|
||||
block.replace("<YOUR_HUGGINGFACEHUB_API_TOKEN>", self.hf_token).replace(
|
||||
"{your_username}", "m-ric"
|
||||
)
|
||||
for block in code_blocks
|
||||
if not any(
|
||||
[snippet in block for snippet in excluded_snippets]
|
||||
) # Exclude these tools that take longer to run and add dependencies
|
||||
]
|
||||
test_script = self.extractor.create_test_script(code_blocks, self._tmpdir)
|
||||
run_command(self.launch_args + [str(test_script)])
|
||||
|
|
Loading…
Reference in New Issue