#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from enum import Enum from typing import Dict, List, Optional from huggingface_hub import InferenceClient from transformers import AutoTokenizer, Pipeline import logging logger = logging.getLogger(__name__) class MessageRole(str, Enum): USER = "user" ASSISTANT = "assistant" SYSTEM = "system" TOOL_CALL = "tool-call" TOOL_RESPONSE = "tool-response" @classmethod def roles(cls): return [r.value for r in cls] def get_clean_message_list(message_list: List[Dict[str, str]], role_conversions: Dict[str, str] = {}): """ Subsequent messages with the same role will be concatenated to a single message. Args: message_list (`List[Dict[str, str]]`): List of chat messages. """ final_message_list = [] message_list = deepcopy(message_list) # Avoid modifying the original list for message in message_list: if not set(message.keys()) == {"role", "content"}: raise ValueError("Message should contain only 'role' and 'content' keys!") role = message["role"] if role not in MessageRole.roles(): raise ValueError(f"Incorrect role {role}, only {MessageRole.roles()} are supported for now.") if role in role_conversions: message["role"] = role_conversions[role] if len(final_message_list) > 0 and message["role"] == final_message_list[-1]["role"]: final_message_list[-1]["content"] += "\n=======\n" + message["content"] else: final_message_list.append(message) return final_message_list llama_role_conversions = { MessageRole.TOOL_RESPONSE: MessageRole.USER, } class HfEngine: def __init__(self, model_id: Optional[str] = None): self.last_input_token_count = None self.last_output_token_count = None if model_id is None: model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct" logger.warning(f"Using default model for token counting: '{model_id}'") try: self.tokenizer = AutoTokenizer.from_pretrained(model_id) except Exception as e: logger.warning(f"Failed to load tokenizer for model {model_id}: {e}. Loading default tokenizer instead.") self.tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct") def get_token_counts(self): return { "input_token_count": self.last_input_token_count, "output_token_count": self.last_output_token_count, } def generate( self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None ): raise NotImplementedError def __call__( self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None ) -> str: """Process the input messages and return the model's response. This method sends a list of messages to the Hugging Face Inference API, optionally with stop sequences and grammar customization. Parameters: messages (`List[Dict[str, str]]`): A list of message dictionaries to be processed. Each dictionary should have the structure `{"role": "user/system", "content": "message content"}`. stop_sequences (`List[str]`, *optional*): A list of strings that will stop the generation if encountered in the model's output. grammar (`str`, *optional*): The grammar or formatting structure to use in the model's response. Returns: `str`: The text content of the model's response. Example: ```python >>> engine = HfApiEngine( ... model="meta-llama/Meta-Llama-3.1-8B-Instruct", ... token="your_hf_token_here", ... max_tokens=2000 ... ) >>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}] >>> response = engine(messages, stop_sequences=["END"]) >>> print(response) "Quantum mechanics is the branch of physics that studies..." ``` """ if not isinstance(messages, List): raise ValueError("Messages should be a list of dictionaries with 'role' and 'content' keys.") if stop_sequences is None: stop_sequences = [] response = self.generate(messages, stop_sequences, grammar) self.last_input_token_count = len(self.tokenizer.apply_chat_template(messages, tokenize=True)) self.last_output_token_count = len(self.tokenizer.encode(response)) # Remove stop sequences from LLM output for stop_seq in stop_sequences: if response[-len(stop_seq) :] == stop_seq: response = response[: -len(stop_seq)] return response class HfApiEngine(HfEngine): """A class to interact with Hugging Face's Inference API for language model interaction. This engine allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization. Parameters: model (`str`, *optional*, defaults to `"meta-llama/Meta-Llama-3.1-8B-Instruct"`): The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub. token (`str`, *optional*): Token used by the Hugging Face API for authentication. If not provided, the class will use the token stored in the Hugging Face CLI configuration. max_tokens (`int`, *optional*, defaults to 1500): The maximum number of tokens allowed in the output. timeout (`int`, *optional*, defaults to 120): Timeout for the API request, in seconds. Raises: ValueError: If the model name is not provided. """ def __init__( self, model: str = "meta-llama/Meta-Llama-3.1-8B-Instruct", token: Optional[str] = None, max_tokens: Optional[int] = 1500, timeout: Optional[int] = 120, ): super().__init__(model_id=model) self.model = model self.client = InferenceClient(self.model, token=token, timeout=timeout) self.max_tokens = max_tokens def generate( self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None ) -> str: # Get clean message list messages = get_clean_message_list(messages, role_conversions=llama_role_conversions) # Send messages to the Hugging Face Inference API if grammar is not None: response = self.client.chat_completion( messages, stop=stop_sequences, max_tokens=self.max_tokens, response_format=grammar ) else: response = self.client.chat_completion(messages, stop=stop_sequences, max_tokens=self.max_tokens) response = response.choices[0].message.content return response class TransformersEngine(HfEngine): """This engine uses a pre-initialized local text-generation pipeline.""" def __init__(self, pipeline: Pipeline, model_id: Optional[str] = None): super().__init__(model_id) self.pipeline = pipeline def generate( self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None, max_length: int = 1500, ) -> str: # Get clean message list messages = get_clean_message_list(messages, role_conversions=llama_role_conversions) # Get LLM output if stop_sequences is not None and len(stop_sequences) > 0: stop_strings = stop_sequences else: stop_strings = None output = self.pipeline( messages, stop_strings=stop_strings, max_length=max_length, tokenizer=self.pipeline.tokenizer, ) response = output[0]["generated_text"][-1]["content"] return response DEFAULT_JSONAGENT_REGEX_GRAMMAR = { "type": "regex", "value": 'Thought: .+?\\nAction:\\n\\{\\n\\s{4}"action":\\s"[^"\\n]+",\\n\\s{4}"action_input":\\s"[^"\\n]+"\\n\\}\\n', } DEFAULT_CODEAGENT_REGEX_GRAMMAR = { "type": "regex", "value": "Thought: .+?\\nCode:\\n```(?:py|python)?\\n(?:.|\\s)+?\\n```", }