smolagents/tests/test_monitoring.py

180 lines
5.4 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from smolagents import (
AgentImage,
AgentError,
CodeAgent,
ToolCallingAgent,
stream_to_gradio,
)
class MonitoringTester(unittest.TestCase):
def test_code_agent_metrics(self):
class FakeLLMEngine:
def __init__(self):
self.last_input_token_count = 10
self.last_output_token_count = 20
def __call__(self, prompt, **kwargs):
return """
Code:
```py
final_answer('This is the final answer.')
```"""
agent = CodeAgent(
tools=[],
llm_engine=FakeLLMEngine(),
max_iterations=1,
)
agent.run("Fake task")
self.assertEqual(agent.monitor.total_input_token_count, 10)
self.assertEqual(agent.monitor.total_output_token_count, 20)
def test_json_agent_metrics(self):
class FakeLLMEngine:
def __init__(self):
self.last_input_token_count = 10
self.last_output_token_count = 20
def __call__(self, prompt, **kwargs):
return 'Action:{"action": "final_answer", "action_input": {"answer": "image"}}'
agent = ToolCallingAgent(
tools=[],
llm_engine=FakeLLMEngine(),
max_iterations=1,
)
agent.run("Fake task")
self.assertEqual(agent.monitor.total_input_token_count, 10)
self.assertEqual(agent.monitor.total_output_token_count, 20)
def test_code_agent_metrics_max_iterations(self):
class FakeLLMEngine:
def __init__(self):
self.last_input_token_count = 10
self.last_output_token_count = 20
def __call__(self, prompt, **kwargs):
return "Malformed answer"
agent = CodeAgent(
tools=[],
llm_engine=FakeLLMEngine(),
max_iterations=1,
)
agent.run("Fake task")
self.assertEqual(agent.monitor.total_input_token_count, 20)
self.assertEqual(agent.monitor.total_output_token_count, 40)
def test_code_agent_metrics_generation_error(self):
class FakeLLMEngine:
def __init__(self):
self.last_input_token_count = 10
self.last_output_token_count = 20
def __call__(self, prompt, **kwargs):
raise AgentError
agent = CodeAgent(
tools=[],
llm_engine=FakeLLMEngine(),
max_iterations=1,
)
agent.run("Fake task")
self.assertEqual(agent.monitor.total_input_token_count, 20)
self.assertEqual(agent.monitor.total_output_token_count, 40)
def test_streaming_agent_text_output(self):
def dummy_llm_engine(prompt, **kwargs):
return """
Code:
```py
final_answer('This is the final answer.')
```"""
agent = CodeAgent(
tools=[],
llm_engine=dummy_llm_engine,
max_iterations=1,
)
# Use stream_to_gradio to capture the output
outputs = list(stream_to_gradio(agent, task="Test task", test_mode=True))
self.assertEqual(len(outputs), 4)
final_message = outputs[-1]
self.assertEqual(final_message.role, "assistant")
self.assertIn("This is the final answer.", final_message.content)
def test_streaming_agent_image_output(self):
def dummy_llm_engine(prompt, **kwargs):
return (
'Action:{"action": "final_answer", "action_input": {"answer": "image"}}'
)
agent = ToolCallingAgent(
tools=[],
llm_engine=dummy_llm_engine,
max_iterations=1,
)
# Use stream_to_gradio to capture the output
outputs = list(
stream_to_gradio(
agent,
task="Test task",
image=AgentImage(value="path.png"),
test_mode=True,
)
)
self.assertEqual(len(outputs), 3)
final_message = outputs[-1]
self.assertEqual(final_message.role, "assistant")
self.assertIsInstance(final_message.content, dict)
self.assertEqual(final_message.content["path"], "path.png")
self.assertEqual(final_message.content["mime_type"], "image/png")
def test_streaming_with_agent_error(self):
def dummy_llm_engine(prompt, **kwargs):
raise AgentError("Simulated agent error")
agent = CodeAgent(
tools=[],
llm_engine=dummy_llm_engine,
max_iterations=1,
)
# Use stream_to_gradio to capture the output
outputs = list(stream_to_gradio(agent, task="Test task", test_mode=True))
self.assertEqual(len(outputs), 5)
final_message = outputs[-1]
self.assertEqual(final_message.role, "assistant")
self.assertIn("Simulated agent error", final_message.content)