184 lines
5.7 KiB
Python
184 lines
5.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from smolagents import (
|
|
AgentError,
|
|
AgentImage,
|
|
CodeAgent,
|
|
ToolCallingAgent,
|
|
stream_to_gradio,
|
|
)
|
|
from smolagents.models import (
|
|
ChatMessage,
|
|
ChatMessageToolCall,
|
|
ChatMessageToolCallDefinition,
|
|
)
|
|
from smolagents.utils import AgentLogger, LogLevel
|
|
|
|
|
|
class FakeLLMModel:
|
|
def __init__(self):
|
|
self.last_input_token_count = 10
|
|
self.last_output_token_count = 20
|
|
|
|
def __call__(self, prompt, tools_to_call_from=None, **kwargs):
|
|
if tools_to_call_from is not None:
|
|
return ChatMessage(
|
|
role="assistant",
|
|
content="",
|
|
tool_calls=[
|
|
ChatMessageToolCall(
|
|
id="fake_id",
|
|
type="function",
|
|
function=ChatMessageToolCallDefinition(name="final_answer", arguments={"answer": "image"}),
|
|
)
|
|
],
|
|
)
|
|
else:
|
|
return ChatMessage(
|
|
role="assistant",
|
|
content="""
|
|
Code:
|
|
```py
|
|
final_answer('This is the final answer.')
|
|
```""",
|
|
)
|
|
|
|
|
|
class MonitoringTester(unittest.TestCase):
|
|
def test_code_agent_metrics(self):
|
|
agent = CodeAgent(
|
|
tools=[],
|
|
model=FakeLLMModel(),
|
|
max_steps=1,
|
|
)
|
|
agent.run("Fake task")
|
|
|
|
self.assertEqual(agent.monitor.total_input_token_count, 10)
|
|
self.assertEqual(agent.monitor.total_output_token_count, 20)
|
|
|
|
def test_toolcalling_agent_metrics(self):
|
|
agent = ToolCallingAgent(
|
|
tools=[],
|
|
model=FakeLLMModel(),
|
|
max_steps=1,
|
|
)
|
|
|
|
agent.run("Fake task")
|
|
|
|
self.assertEqual(agent.monitor.total_input_token_count, 10)
|
|
self.assertEqual(agent.monitor.total_output_token_count, 20)
|
|
|
|
def test_code_agent_metrics_max_steps(self):
|
|
class FakeLLMModelMalformedAnswer:
|
|
def __init__(self):
|
|
self.last_input_token_count = 10
|
|
self.last_output_token_count = 20
|
|
|
|
def __call__(self, prompt, **kwargs):
|
|
return ChatMessage(role="assistant", content="Malformed answer")
|
|
|
|
agent = CodeAgent(
|
|
tools=[],
|
|
model=FakeLLMModelMalformedAnswer(),
|
|
max_steps=1,
|
|
)
|
|
|
|
agent.run("Fake task")
|
|
|
|
self.assertEqual(agent.monitor.total_input_token_count, 20)
|
|
self.assertEqual(agent.monitor.total_output_token_count, 40)
|
|
|
|
def test_code_agent_metrics_generation_error(self):
|
|
class FakeLLMModelGenerationException:
|
|
def __init__(self):
|
|
self.last_input_token_count = 10
|
|
self.last_output_token_count = 20
|
|
|
|
def __call__(self, prompt, **kwargs):
|
|
self.last_input_token_count = 10
|
|
self.last_output_token_count = 0
|
|
raise Exception("Cannot generate")
|
|
|
|
agent = CodeAgent(
|
|
tools=[],
|
|
model=FakeLLMModelGenerationException(),
|
|
max_steps=1,
|
|
)
|
|
agent.run("Fake task")
|
|
|
|
self.assertEqual(agent.monitor.total_input_token_count, 20) # Should have done two monitoring callbacks
|
|
self.assertEqual(agent.monitor.total_output_token_count, 0)
|
|
|
|
def test_streaming_agent_text_output(self):
|
|
agent = CodeAgent(
|
|
tools=[],
|
|
model=FakeLLMModel(),
|
|
max_steps=1,
|
|
)
|
|
|
|
# Use stream_to_gradio to capture the output
|
|
outputs = list(stream_to_gradio(agent, task="Test task"))
|
|
|
|
self.assertEqual(len(outputs), 7)
|
|
final_message = outputs[-1]
|
|
self.assertEqual(final_message.role, "assistant")
|
|
self.assertIn("This is the final answer.", final_message.content)
|
|
|
|
def test_streaming_agent_image_output(self):
|
|
agent = ToolCallingAgent(
|
|
tools=[],
|
|
model=FakeLLMModel(),
|
|
max_steps=1,
|
|
)
|
|
|
|
# Use stream_to_gradio to capture the output
|
|
outputs = list(
|
|
stream_to_gradio(
|
|
agent,
|
|
task="Test task",
|
|
additional_args=dict(image=AgentImage(value="path.png")),
|
|
)
|
|
)
|
|
|
|
self.assertEqual(len(outputs), 5)
|
|
final_message = outputs[-1]
|
|
self.assertEqual(final_message.role, "assistant")
|
|
self.assertIsInstance(final_message.content, dict)
|
|
self.assertEqual(final_message.content["path"], "path.png")
|
|
self.assertEqual(final_message.content["mime_type"], "image/png")
|
|
|
|
def test_streaming_with_agent_error(self):
|
|
logger = AgentLogger(level=LogLevel.INFO)
|
|
|
|
def dummy_model(prompt, **kwargs):
|
|
raise AgentError("Simulated agent error", logger)
|
|
|
|
agent = CodeAgent(
|
|
tools=[],
|
|
model=dummy_model,
|
|
max_steps=1,
|
|
)
|
|
|
|
# Use stream_to_gradio to capture the output
|
|
outputs = list(stream_to_gradio(agent, task="Test task"))
|
|
|
|
self.assertEqual(len(outputs), 9)
|
|
final_message = outputs[-1]
|
|
self.assertEqual(final_message.role, "assistant")
|
|
self.assertIn("Simulated agent error", final_message.content)
|