60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import get_tests_dir, require_torch
|
|
|
|
from smolagents.default_tools import FinalAnswerTool
|
|
from smolagents.types import AGENT_TYPE_MAPPING
|
|
|
|
from .test_tools import ToolTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class FinalAnswerToolTester(unittest.TestCase, ToolTesterMixin):
|
|
def setUp(self):
|
|
self.inputs = {"answer": "Final answer"}
|
|
self.tool = FinalAnswerTool()
|
|
|
|
def test_exact_match_arg(self):
|
|
result = self.tool("Final answer")
|
|
self.assertEqual(result, "Final answer")
|
|
|
|
def test_exact_match_kwarg(self):
|
|
result = self.tool(answer=self.inputs["answer"])
|
|
self.assertEqual(result, "Final answer")
|
|
|
|
def create_inputs(self):
|
|
inputs_text = {"answer": "Text input"}
|
|
inputs_image = {"answer": Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png").resize((512, 512))}
|
|
inputs_audio = {"answer": torch.Tensor(np.ones(3000))}
|
|
return {"string": inputs_text, "image": inputs_image, "audio": inputs_audio}
|
|
|
|
@require_torch
|
|
def test_agent_type_output(self):
|
|
inputs = self.create_inputs()
|
|
for input_type, input in inputs.items():
|
|
output = self.tool(**input, sanitize_inputs_outputs=True)
|
|
agent_type = AGENT_TYPE_MAPPING[input_type]
|
|
self.assertTrue(isinstance(output, agent_type))
|