smolagents/src/agents/llm_engines.py

369 lines
13 KiB
Python

#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from enum import Enum
from typing import Dict, List, Optional
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, Pipeline
import logging
import os
from openai import OpenAI
logger = logging.getLogger(__name__)
DEFAULT_JSONAGENT_REGEX_GRAMMAR = {
"type": "regex",
"value": 'Thought: .+?\\nAction:\\n\\{\\n\\s{4}"action":\\s"[^"\\n]+",\\n\\s{4}"action_input":\\s"[^"\\n]+"\\n\\}\\n<end_action>',
}
DEFAULT_CODEAGENT_REGEX_GRAMMAR = {
"type": "regex",
"value": "Thought: .+?\\nCode:\\n```(?:py|python)?\\n(?:.|\\s)+?\\n```<end_action>",
}
class MessageRole(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
TOOL_CALL = "tool-call"
TOOL_RESPONSE = "tool-response"
@classmethod
def roles(cls):
return [r.value for r in cls]
openai_role_conversions = {
MessageRole.TOOL_RESPONSE: MessageRole.USER,
}
llama_role_conversions = {
MessageRole.TOOL_RESPONSE: MessageRole.USER,
}
def get_clean_message_list(
message_list: List[Dict[str, str]], role_conversions: Dict[str, str] = {}
):
"""
Subsequent messages with the same role will be concatenated to a single message.
Args:
message_list (`List[Dict[str, str]]`): List of chat messages.
"""
final_message_list = []
message_list = deepcopy(message_list) # Avoid modifying the original list
for message in message_list:
if not set(message.keys()) == {"role", "content"}:
raise ValueError("Message should contain only 'role' and 'content' keys!")
role = message["role"]
if role not in MessageRole.roles():
raise ValueError(
f"Incorrect role {role}, only {MessageRole.roles()} are supported for now."
)
if role in role_conversions:
message["role"] = role_conversions[role]
if (
len(final_message_list) > 0
and message["role"] == final_message_list[-1]["role"]
):
final_message_list[-1]["content"] += "\n=======\n" + message["content"]
else:
final_message_list.append(message)
return final_message_list
class HfEngine:
def __init__(self, model_id: Optional[str] = None):
self.last_input_token_count = None
self.last_output_token_count = None
if model_id is None:
model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
logger.warning(f"Using default model for token counting: '{model_id}'")
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
except Exception as e:
logger.warning(
f"Failed to load tokenizer for model {model_id}: {e}. Loading default tokenizer instead."
)
self.tokenizer = AutoTokenizer.from_pretrained(
"HuggingFaceTB/SmolLM2-1.7B-Instruct"
)
def get_token_counts(self):
return {
"input_token_count": self.last_input_token_count,
"output_token_count": self.last_output_token_count,
}
def generate(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_tokens: int = 1500
):
raise NotImplementedError
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_tokens: int = 1500,
) -> str:
"""Process the input messages and return the model's response.
This method sends a list of messages to the Hugging Face Inference API, optionally with stop sequences and grammar customization.
Parameters:
messages (`List[Dict[str, str]]`):
A list of message dictionaries to be processed. Each dictionary should have the structure `{"role": "user/system", "content": "message content"}`.
stop_sequences (`List[str]`, *optional*):
A list of strings that will stop the generation if encountered in the model's output.
grammar (`str`, *optional*):
The grammar or formatting structure to use in the model's response.
Returns:
`str`: The text content of the model's response.
Example:
```python
>>> engine = HfApiEngine(
... model="Qwen/Qwen2.5-Coder-32B-Instruct",
... token="your_hf_token_here",
... max_tokens=2000
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
if not isinstance(messages, List):
raise ValueError(
"Messages should be a list of dictionaries with 'role' and 'content' keys."
)
if stop_sequences is None:
stop_sequences = []
response = self.generate(messages, stop_sequences, grammar, max_tokens)
self.last_input_token_count = len(
self.tokenizer.apply_chat_template(messages, tokenize=True)
)
self.last_output_token_count = len(self.tokenizer.encode(response))
# Remove stop sequences from LLM output
for stop_seq in stop_sequences:
if response[-len(stop_seq) :] == stop_seq:
response = response[: -len(stop_seq)]
return response
class HfApiEngine(HfEngine):
"""A class to interact with Hugging Face's Inference API for language model interaction.
This engine allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.
Parameters:
model (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
token (`str`, *optional*):
Token used by the Hugging Face API for authentication. This token need to be authorized 'Make calls to the serverless Inference API'.
If the model is gated (like Llama-3 models), the token also needs 'Read access to contents of all public gated repos you can access'.
If not provided, the class will try to use environment variable 'HF_TOKEN', else use the token stored in the Hugging Face CLI configuration.
max_tokens (`int`, *optional*, defaults to 1500):
The maximum number of tokens allowed in the output.
timeout (`int`, *optional*, defaults to 120):
Timeout for the API request, in seconds.
Raises:
ValueError:
If the model name is not provided.
"""
def __init__(
self,
model: str = "Qwen/Qwen2.5-Coder-32B-Instruct",
token: Optional[str] = None,
timeout: Optional[int] = 120,
):
super().__init__(model_id=model)
self.model = model
if token is None:
token = os.getenv("HF_TOKEN")
self.client = InferenceClient(self.model, token=token, timeout=timeout)
def generate(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_tokens: int = 1500,
) -> str:
# Get clean message list
messages = get_clean_message_list(
messages, role_conversions=llama_role_conversions
)
# Send messages to the Hugging Face Inference API
if grammar is not None:
response = self.client.chat_completion(
messages,
stop=stop_sequences,
response_format=grammar,
max_tokens=max_tokens,
)
else:
response = self.client.chat_completion(
messages, stop=stop_sequences, max_tokens=max_tokens
)
response = response.choices[0].message.content
return response
class TransformersEngine(HfEngine):
"""This engine uses a pre-initialized local text-generation pipeline."""
def __init__(self, pipeline: Pipeline, model_id: Optional[str] = None):
super().__init__(model_id)
self.pipeline = pipeline
def generate(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_tokens: int = 1500,
) -> str:
# Get clean message list
messages = get_clean_message_list(
messages, role_conversions=llama_role_conversions
)
# Get LLM output
if stop_sequences is not None and len(stop_sequences) > 0:
stop_strings = stop_sequences
else:
stop_strings = None
output = self.pipeline(
messages,
stop_strings=stop_strings,
max_length=max_tokens,
tokenizer=self.pipeline.tokenizer,
)
response = output[0]["generated_text"][-1]["content"]
return response
class OpenAIEngine:
def __init__(self, model_name: Optional[str] = None, api_key: Optional[str] = None, base_url: Optional[str] = None):
"""Creates a LLM Engine that follows OpenAI format.
Args:
model_name (`str`, *optional*): the model name to use.
api_key (`str`, *optional*): your API key.
base_url (`str`, *optional*): the URL to use if using a different inference service than OpenAI, for instance "https://api-inference.huggingface.co/v1/".
"""
if model_name is None:
model_name = "gpt-4o"
if api_key is None:
api_key = os.getenv("OPENAI_API_KEY")
self.model_name = model_name
self.client = OpenAI(
base_url=base_url,
api_key=api_key,
)
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_tokens: int = 1500,
) -> str:
messages = get_clean_message_list(messages, role_conversions=openai_role_conversions)
response = self.client.chat.completions.create(
model=self.model_name,
messages=messages,
stop=stop_sequences,
temperature=0.5,
max_tokens=max_tokens,
)
return response.choices[0].message.content
class AnthropicEngine:
def __init__(self, model_name="claude-3-5-sonnet-20240620", use_bedrock=False):
from anthropic import Anthropic, AnthropicBedrock
self.model_name = model_name
if use_bedrock:
self.model_name = "anthropic.claude-3-5-sonnet-20240620-v1:0"
self.client = AnthropicBedrock(
aws_access_key=os.getenv("AWS_BEDROCK_ID"),
aws_secret_key=os.getenv("AWS_BEDROCK_KEY"),
aws_region="us-east-1",
)
else:
self.client = Anthropic(
api_key=os.getenv("ANTHROPIC_API_KEY"),
)
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_tokens: int = 1500,
) -> str:
messages = get_clean_message_list(messages, role_conversions=openai_role_conversions)
index_system_message, system_prompt = None, None
for index, message in enumerate(messages):
if message["role"] == MessageRole.SYSTEM:
index_system_message = index
system_prompt = message["content"]
if system_prompt is None:
raise Exception("No system prompt found!")
filtered_messages = [message for i, message in enumerate(messages) if i != index_system_message]
if len(filtered_messages) == 0:
print("Error, no user message:", messages)
assert False
response = self.client.messages.create(
model=self.model_name,
system=system_prompt,
messages=filtered_messages,
stop_sequences=stop_sequences,
temperature=0.5,
max_tokens=max_tokens,
)
full_response_text = ""
for content_block in response.content:
if content_block.type == "text":
full_response_text += content_block.text
return full_response_text
__all__ = ["MessageRole", "llama_role_conversions", "get_clean_message_list", "HfEngine", "TransformersEngine", "HfApiEngine", "OpenAIEngine", "AnthropicEngine"]