217 lines
8.9 KiB
Python
217 lines
8.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
from transformers.testing_utils import get_tests_dir
|
|
|
|
from smolagents import ChatMessage, HfApiModel, MLXModel, TransformersModel, models, tool
|
|
from smolagents.models import MessageRole, get_clean_message_list, parse_json_if_needed
|
|
|
|
|
|
class ModelTests(unittest.TestCase):
|
|
def test_get_json_schema_has_nullable_args(self):
|
|
@tool
|
|
def get_weather(location: str, celsius: Optional[bool] = False) -> str:
|
|
"""
|
|
Get weather in the next days at given location.
|
|
Secretly this tool does not care about the location, it hates the weather everywhere.
|
|
|
|
Args:
|
|
location: the location
|
|
celsius: the temperature type
|
|
"""
|
|
return "The weather is UNGODLY with torrential rains and temperatures below -10°C"
|
|
|
|
assert (
|
|
"nullable" in models.get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"]
|
|
)
|
|
|
|
def test_chatmessage_has_model_dumps_json(self):
|
|
message = ChatMessage("user", [{"type": "text", "text": "Hello!"}])
|
|
data = json.loads(message.model_dump_json())
|
|
assert data["content"] == [{"type": "text", "text": "Hello!"}]
|
|
|
|
@pytest.mark.skipif(not os.getenv("RUN_ALL"), reason="RUN_ALL environment variable not set")
|
|
def test_get_hfapi_message_no_tool(self):
|
|
model = HfApiModel(max_tokens=10)
|
|
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
|
|
model(messages, stop_sequences=["great"])
|
|
|
|
@pytest.mark.skipif(not os.getenv("RUN_ALL"), reason="RUN_ALL environment variable not set")
|
|
def test_get_hfapi_message_no_tool_external_provider(self):
|
|
model = HfApiModel(model="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10)
|
|
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
|
|
model(messages, stop_sequences=["great"])
|
|
|
|
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
|
|
def test_get_mlx_message_no_tool(self):
|
|
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10)
|
|
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
|
|
output = model(messages, stop_sequences=["great"]).content
|
|
assert output.startswith("Hello")
|
|
|
|
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
|
|
def test_get_mlx_message_tricky_stop_sequence(self):
|
|
# In this test HuggingFaceTB/SmolLM2-135M-Instruct generates the token ">'"
|
|
# which is required to test capturing stop_sequences that have extra chars at the end.
|
|
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100)
|
|
stop_sequence = " print '>"
|
|
messages = [{"role": "user", "content": [{"type": "text", "text": f"Please{stop_sequence}'"}]}]
|
|
# check our assumption that that ">" is followed by "'"
|
|
assert model.tokenizer.vocab[">'"]
|
|
assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'"
|
|
# check stop_sequence capture when output has trailing chars
|
|
assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you"
|
|
|
|
def test_transformers_message_no_tool(self):
|
|
model = TransformersModel(
|
|
model_id="HuggingFaceTB/SmolLM2-135M-Instruct",
|
|
max_new_tokens=5,
|
|
device_map="auto",
|
|
do_sample=False,
|
|
)
|
|
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
|
|
output = model(messages, stop_sequences=["great"]).content
|
|
assert output == "assistant\nHello"
|
|
|
|
def test_transformers_message_vl_no_tool(self):
|
|
from PIL import Image
|
|
|
|
img = Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png")
|
|
model = TransformersModel(
|
|
model_id="llava-hf/llava-interleave-qwen-0.5b-hf",
|
|
max_new_tokens=5,
|
|
device_map="auto",
|
|
do_sample=False,
|
|
)
|
|
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}, {"type": "image", "image": img}]}]
|
|
output = model(messages, stop_sequences=["great"]).content
|
|
assert output == "Hello! How can"
|
|
|
|
def test_parse_json_if_needed(self):
|
|
args = "abc"
|
|
parsed_args = parse_json_if_needed(args)
|
|
assert parsed_args == "abc"
|
|
|
|
args = '{"a": 3}'
|
|
parsed_args = parse_json_if_needed(args)
|
|
assert parsed_args == {"a": 3}
|
|
|
|
args = "3"
|
|
parsed_args = parse_json_if_needed(args)
|
|
assert parsed_args == 3
|
|
|
|
args = 3
|
|
parsed_args = parse_json_if_needed(args)
|
|
assert parsed_args == 3
|
|
|
|
|
|
class TestHfApiModel:
|
|
def test_call_with_custom_role_conversions(self):
|
|
custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM}
|
|
model = HfApiModel(model_id="test-model", custom_role_conversions=custom_role_conversions)
|
|
model.client = MagicMock()
|
|
messages = [{"role": "user", "content": "Test message"}]
|
|
_ = model(messages)
|
|
# Verify that the role conversion was applied
|
|
assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", (
|
|
"role conversion should be applied"
|
|
)
|
|
|
|
|
|
def test_get_clean_message_list_basic():
|
|
messages = [
|
|
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
|
|
{"role": "assistant", "content": [{"type": "text", "text": "Hi there!"}]},
|
|
]
|
|
result = get_clean_message_list(messages)
|
|
assert len(result) == 2
|
|
assert result[0]["role"] == "user"
|
|
assert result[0]["content"][0]["text"] == "Hello!"
|
|
assert result[1]["role"] == "assistant"
|
|
assert result[1]["content"][0]["text"] == "Hi there!"
|
|
|
|
|
|
def test_get_clean_message_list_role_conversions():
|
|
messages = [
|
|
{"role": "tool-call", "content": [{"type": "text", "text": "Calling tool..."}]},
|
|
{"role": "tool-response", "content": [{"type": "text", "text": "Tool response"}]},
|
|
]
|
|
result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"})
|
|
assert len(result) == 2
|
|
assert result[0]["role"] == "assistant"
|
|
assert result[0]["content"][0]["text"] == "Calling tool..."
|
|
assert result[1]["role"] == "user"
|
|
assert result[1]["content"][0]["text"] == "Tool response"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"convert_images_to_image_urls, expected_clean_message",
|
|
[
|
|
(
|
|
False,
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "image": "encoded_image"},
|
|
{"type": "image", "image": "second_encoded_image"},
|
|
],
|
|
},
|
|
),
|
|
(
|
|
True,
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": "_image"}},
|
|
{"type": "image_url", "image_url": {"url": "_encoded_image"}},
|
|
],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}],
|
|
}
|
|
]
|
|
with patch("smolagents.models.encode_image_base64") as mock_encode:
|
|
mock_encode.side_effect = ["encoded_image", "second_encoded_image"]
|
|
result = get_clean_message_list(messages, convert_images_to_image_urls=convert_images_to_image_urls)
|
|
mock_encode.assert_any_call(b"image_data")
|
|
mock_encode.assert_any_call(b"second_image_data")
|
|
assert len(result) == 1
|
|
assert result[0] == expected_clean_message
|
|
|
|
|
|
def test_get_clean_message_list_flatten_messages_as_text():
|
|
messages = [
|
|
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
|
|
{"role": "user", "content": [{"type": "text", "text": "How are you?"}]},
|
|
]
|
|
result = get_clean_message_list(messages, flatten_messages_as_text=True)
|
|
assert len(result) == 1
|
|
assert result[0]["role"] == "user"
|
|
assert result[0]["content"] == "Hello!How are you?"
|