202 lines
6.7 KiB
Markdown
202 lines
6.7 KiB
Markdown
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
# Text-to-SQL
|
||
|
||
[[open-in-colab]]
|
||
|
||
在此教程中,我们将看到如何使用 `smolagents` 实现一个利用 SQL 的 agent。
|
||
|
||
> 让我们从经典问题开始:为什么不简单地使用标准的 text-to-SQL pipeline 呢?
|
||
|
||
标准的 text-to-SQL pipeline 很脆弱,因为生成的 SQL 查询可能会出错。更糟糕的是,查询可能出错却不引发错误警报,从而返回一些不正确或无用的结果。
|
||
|
||
👉 相反,agent 系统则可以检视输出结果并决定查询是否需要被更改,因此带来巨大的性能提升。
|
||
|
||
让我们来一起构建这个 agent! 💪
|
||
|
||
首先,我们构建一个 SQL 的环境:
|
||
```py
|
||
from sqlalchemy import (
|
||
create_engine,
|
||
MetaData,
|
||
Table,
|
||
Column,
|
||
String,
|
||
Integer,
|
||
Float,
|
||
insert,
|
||
inspect,
|
||
text,
|
||
)
|
||
|
||
engine = create_engine("sqlite:///:memory:")
|
||
metadata_obj = MetaData()
|
||
|
||
# create city SQL table
|
||
table_name = "receipts"
|
||
receipts = Table(
|
||
table_name,
|
||
metadata_obj,
|
||
Column("receipt_id", Integer, primary_key=True),
|
||
Column("customer_name", String(16), primary_key=True),
|
||
Column("price", Float),
|
||
Column("tip", Float),
|
||
)
|
||
metadata_obj.create_all(engine)
|
||
|
||
rows = [
|
||
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
|
||
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
|
||
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43},
|
||
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00},
|
||
]
|
||
for row in rows:
|
||
stmt = insert(receipts).values(**row)
|
||
with engine.begin() as connection:
|
||
cursor = connection.execute(stmt)
|
||
```
|
||
|
||
### 构建 agent
|
||
|
||
现在,我们构建一个 agent,它将使用 SQL 查询来回答问题。工具的 description 属性将被 agent 系统嵌入到 LLM 的提示中:它为 LLM 提供有关如何使用该工具的信息。这正是我们描述 SQL 表的地方。
|
||
|
||
```py
|
||
inspector = inspect(engine)
|
||
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")]
|
||
|
||
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
|
||
print(table_description)
|
||
```
|
||
|
||
```text
|
||
Columns:
|
||
- receipt_id: INTEGER
|
||
- customer_name: VARCHAR(16)
|
||
- price: FLOAT
|
||
- tip: FLOAT
|
||
```
|
||
|
||
现在让我们构建我们的工具。它需要以下内容:(更多细节请参阅[工具文档](../tutorials/tools))
|
||
|
||
- 一个带有 `Args:` 部分列出参数的 docstring。
|
||
- 输入和输出的type hints。
|
||
|
||
```py
|
||
from smolagents import tool
|
||
|
||
@tool
|
||
def sql_engine(query: str) -> str:
|
||
"""
|
||
Allows you to perform SQL queries on the table. Returns a string representation of the result.
|
||
The table is named 'receipts'. Its description is as follows:
|
||
Columns:
|
||
- receipt_id: INTEGER
|
||
- customer_name: VARCHAR(16)
|
||
- price: FLOAT
|
||
- tip: FLOAT
|
||
|
||
Args:
|
||
query: The query to perform. This should be correct SQL.
|
||
"""
|
||
output = ""
|
||
with engine.connect() as con:
|
||
rows = con.execute(text(query))
|
||
for row in rows:
|
||
output += "\n" + str(row)
|
||
return output
|
||
```
|
||
|
||
我们现在使用这个工具来创建一个 agent。我们使用 `CodeAgent`,这是 smolagent 的主要 agent 类:一个在代码中编写操作并根据 ReAct 框架迭代先前输出的 agent。
|
||
|
||
这个模型是驱动 agent 系统的 LLM。`HfApiModel` 允许你使用 HF Inference API 调用 LLM,无论是通过 Serverless 还是 Dedicated endpoint,但你也可以使用任何专有 API。
|
||
|
||
```py
|
||
from smolagents import CodeAgent, HfApiModel
|
||
|
||
agent = CodeAgent(
|
||
tools=[sql_engine],
|
||
model=HfApiModel("meta-llama/Meta-Llama-3.1-8B-Instruct"),
|
||
)
|
||
agent.run("Can you give me the name of the client who got the most expensive receipt?")
|
||
```
|
||
|
||
### Level 2: 表连接
|
||
|
||
现在让我们增加一些挑战!我们希望我们的 agent 能够处理跨多个表的连接。因此,我们创建一个新表,记录每个 receipt_id 的服务员名字!
|
||
|
||
```py
|
||
table_name = "waiters"
|
||
receipts = Table(
|
||
table_name,
|
||
metadata_obj,
|
||
Column("receipt_id", Integer, primary_key=True),
|
||
Column("waiter_name", String(16), primary_key=True),
|
||
)
|
||
metadata_obj.create_all(engine)
|
||
|
||
rows = [
|
||
{"receipt_id": 1, "waiter_name": "Corey Johnson"},
|
||
{"receipt_id": 2, "waiter_name": "Michael Watts"},
|
||
{"receipt_id": 3, "waiter_name": "Michael Watts"},
|
||
{"receipt_id": 4, "waiter_name": "Margaret James"},
|
||
]
|
||
for row in rows:
|
||
stmt = insert(receipts).values(**row)
|
||
with engine.begin() as connection:
|
||
cursor = connection.execute(stmt)
|
||
```
|
||
|
||
因为我们改变了表,我们需要更新 `SQLExecutorTool`,让 LLM 能够正确利用这个表的信息。
|
||
|
||
```py
|
||
updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output.
|
||
It can use the following tables:"""
|
||
|
||
inspector = inspect(engine)
|
||
for table in ["receipts", "waiters"]:
|
||
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)]
|
||
|
||
table_description = f"Table '{table}':\n"
|
||
|
||
table_description += "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
|
||
updated_description += "\n\n" + table_description
|
||
|
||
print(updated_description)
|
||
```
|
||
|
||
因为这个request 比之前的要难一些,我们将 LLM 引擎切换到更强大的 [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)!
|
||
|
||
```py
|
||
sql_engine.description = updated_description
|
||
|
||
agent = CodeAgent(
|
||
tools=[sql_engine],
|
||
model=HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct"),
|
||
)
|
||
|
||
agent.run("Which waiter got more total money from tips?")
|
||
```
|
||
|
||
它直接就能工作!设置过程非常简单,难道不是吗?
|
||
|
||
这个例子到此结束!我们涵盖了这些概念:
|
||
|
||
- 构建新工具。
|
||
- 更新工具的描述。
|
||
- 切换到更强大的 LLM 有助于 agent 推理。
|
||
|
||
✅ 现在你可以构建你一直梦寐以求的 text-to-SQL 系统了!✨
|