smolagents/docs/source/en/examples/text_to_sql.md

202 lines
6.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Text-to-SQL
[[open-in-colab]]
In this tutorial, well see how to implement an agent that leverages SQL using `smolagents`.
> Let's start with the golden question: why not keep it simple and use a standard text-to-SQL pipeline?
A standard text-to-sql pipeline is brittle, since the generated SQL query can be incorrect. Even worse, the query could be incorrect, but not raise an error, instead giving some incorrect/useless outputs without raising an alarm.
👉 Instead, an agent system is able to critically inspect outputs and decide if the query needs to be changed or not, thus giving it a huge performance boost.
Lets build this agent! 💪
First, we setup the SQL environment:
```py
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
Float,
insert,
inspect,
text,
)
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
# create city SQL table
table_name = "receipts"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("customer_name", String(16), primary_key=True),
Column("price", Float),
Column("tip", Float),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43},
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
```
### Build our agent
Now lets make our SQL table retrievable by a tool.
The tools description attribute will be embedded in the LLMs prompt by the agent system: it gives the LLM information about how to use the tool. This is where we want to describe the SQL table.
```py
inspector = inspect(engine)
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")]
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
print(table_description)
```
```text
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
```
Now lets build our tool. It needs the following: (read [the tool doc](../tutorials/tools) for more detail)
- A docstring with an `Args:` part listing arguments.
- Type hints on both inputs and output.
```py
from smolagents import tool
@tool
def sql_engine(query: str) -> str:
"""
Allows you to perform SQL queries on the table. Returns a string representation of the result.
The table is named 'receipts'. Its description is as follows:
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with engine.connect() as con:
rows = con.execute(text(query))
for row in rows:
output += "\n" + str(row)
return output
```
Now let us create an agent that leverages this tool.
We use the `CodeAgent`, which is transformers.agents main agent class: an agent that writes actions in code and can iterate on previous output according to the ReAct framework.
The model is the LLM that powers the agent system. HfApiModel allows you to call LLMs using HFs Inference API, either via Serverless or Dedicated endpoint, but you could also use any proprietary API.
```py
from smolagents import CodeAgent, HfApiModel
agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel("meta-llama/Meta-Llama-3.1-8B-Instruct"),
)
agent.run("Can you give me the name of the client who got the most expensive receipt?")
```
### Level 2: Table joins
Now lets make it more challenging! We want our agent to handle joins across multiple tables.
So lets make a second table recording the names of waiters for each receipt_id!
```py
table_name = "waiters"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("waiter_name", String(16), primary_key=True),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "waiter_name": "Corey Johnson"},
{"receipt_id": 2, "waiter_name": "Michael Watts"},
{"receipt_id": 3, "waiter_name": "Michael Watts"},
{"receipt_id": 4, "waiter_name": "Margaret James"},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
```
Since we changed the table, we update the `SQLExecutorTool` with this tables description to let the LLM properly leverage information from this table.
```py
updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output.
It can use the following tables:"""
inspector = inspect(engine)
for table in ["receipts", "waiters"]:
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)]
table_description = f"Table '{table}':\n"
table_description += "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
updated_description += "\n\n" + table_description
print(updated_description)
```
Since this request is a bit harder than the previous one, well switch the LLM engine to use the more powerful [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)!
```py
sql_engine.description = updated_description
agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct"),
)
agent.run("Which waiter got more total money from tips?")
```
It directly works! The setup was surprisingly simple, wasnt it?
This example is done! We've touched upon these concepts:
- Building new tools.
- Updating a tool's description.
- Switching to a stronger LLM helps agent reasoning.
✅ Now you can go build this text-to-SQL system youve always dreamt of! ✨